
 • 1

P Y T H O N G U I D E

24 Points to master Python
language in Houdini.

oriolmanzano.com

COPYRIGHT © 2024 oriolmanzano.com
All rights reserved.

TACTICAL GUIDE

Master Python language in
24 Steps.

ByORIOL MANZANO

oriolmanzano.com

| INTRODUCTION •

| INTRODUCTION

Welcome to the Ultimate Guide to Mastering Python in
Houdini! This guide is meticulously designed for enthusiasts,
artists, and technical directors who wish to navigate the
powerful synergy between Python programming and Houdini's
robust 3D animation capabilities. Whether you're just starting
or looking to enhance your skill set, we aim to equip you with
the knowledge and tools necessary to automate tasks, create
custom tools and interfaces, manipulate geometry, and much
more. Through a blend of foundational teachings, practical
examples, and advanced explorations, this guide serves as
your beacon through the vast potential that Python scripting
offers within the Houdini environment.

Our journey will cover essential Python basics, dive deep into
the Houdini Python API, and extend into creating digital assets,
managing simulations, and integrating with VEX. Each topic is
designed to build upon the previous, ensuring a
comprehensive understanding that is both practical and
empowering. With concise explanations, actionable code
examples, and valuable resources, you're set to enhance your
projects and workflows significantly. As you progress, you'll
find yourself unlocking new realms of creativity and efficiency,
ready to tackle any challenge with confidence and skill. Let's
embark on this transformative journey together, unlocking the
full potential of Python in Houdini.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

01. FAMILIARIZE YOURSELF WITH HOUDINI

Before delving into Python scripting, it's essential to
have a strong grasp of the Houdini interface,
workflows, and terminology. Understanding how to
navigate the network editor, create nodes, and
manipulate geometry forms the foundation upon
which VEX scripting is built.

Subscribe to my youtube channel to learn the
basics of houdini. Whether you're an aspiring coder
or a budding VFX artist, my comprehensive video
tutorials provide the perfect platform to hone your
skills and unlock your full potential.

https://www.youtube.com/channel/UC-LHfua7Cn44vKn5A30mFPw

For instance, to define a simple function in Python
that prints the name of a node:

In Houdini, you would use this function by passing
a node object from the hou module, which might
look like this:

For more on Python syntax, the official Python
documentation is an invaluable resource.

02. Understanding Python Syntax

Python is renowned for its readability and ease of
use, making it an excellent choice for scripting in
Houdini. Basic syntax includes defining variables,
writing function definitions, and control flow
statements.

def print_node_name(node):
 print(node.name())

oriolmanzano.com python

node = hou.node('/obj/geo1')
print_node_name(node)

oriolmanzano.com python

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html

03. ACCESING PARAMETERS

Accessing and modifying node parameters is a
fundamental operation when scripting in Houdini.
The hou module provides methods to interact with
these parameters. Here's how you can get and set
the value of a parameter:

This script changes the X translation of an object
named 'geo1' to 5.0 units.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

node = hou.node('/obj/geo1')
Get the value of a parameter
translate = node.parm('tx').eval()
print(f"Current X translation: {translate}")

Set the value of a parameter
node.parm('tx').set(5.0)

oriolmanzano.com python

04. CREATING AND EDITING NODES

Automating the creation and configuration of nodes
is a powerful aspect of Houdini's Python API. For
example, creating a sphere and then connecting it to
a transform node can be done like this:

This script showcases how to programmatically add
nodes and define their connections, a common task
in Houdini scripting.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

Create a geometry node in the object level
geo = hou.node('/obj').createNode('geo', 'MyGeo')

Inside the geometry node, create a sphere and a
transform node
sphere = geo.createNode('sphere')
transform = geo.createNode('xform')

Connect the sphere to the transform node
sphere.setOutput(0, transform)

Cook the geo node to update the scene
geo.cook()

oriolmanzano.com python

05.

06. INTEGRATION WITH VEX

WORKING WITH GEOMETRY ATTRIBUTES

Direct manipulation of geometry and attributes is a
bit more advanced but unlocks a lot of procedural
capabilities in Houdini. For instance, adding a
custom attribute to every point in a geometry can
be achieved as follows:

While VEX is the native language for writing
shaders, custom nodes, and effects in Houdini,
Python can call VEX functions and use VEX code
snippets. This interaction is particularly useful for
tasks that are more efficiently executed in VEX.
However, integrating Python with VEX requires an
understanding of both languages and how they can
interoperate within Houdini's context. The Houdini
documentation and forums are great resources for
exploring specific examples of Python and VEX
integration.

This script introduces a new point attribute and
assigns a value to it for every point in the geometry.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

Access the geometry of an existing node
geo = hou.node('/obj/geo1').geometry()

Add a float attribute named 'myAttr' to all points
attr = geo.addAttrib(hou.attribType.Point, "myAttr",
0.0)

Iterate through points and set the attribute's value
for point in geo.points():
 point.setAttribValue(attr, 1.0)

oriolmanzano.com python

07. DYNAMICS AND SIMULATIONS

Houdini excels at dynamics and simulations, areas
where Python scripts can control and automate
complex systems. For instance, adjusting simulation
parameters based on feedback or external data
sources:

This script exemplifies how to script simulation
parameters, a technique that can be expanded to
control virtually any aspect of Houdini's dynamic
systems.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

Access a DOP network and a specific simulation
parameter
dopnet = hou.node('/obj/AutoDopNetwork')
gravity = dopnet.parm('gravity')

Dynamically adjust gravity based on external
conditions
gravity.set(-9.8 * 1.5) # Increase gravity by 50%

oriolmanzano.com python

08. DEBUGGING AND ERROR HANDLING

When scripting in Houdini, you'll inevitably
encounter errors. Proper error handling and
debugging are essential for creating robust scripts.
Python's try-except block is a fundamental tool for
this:

This example attempts to set a parameter on a
potentially non-existent node, catching the
AttributeError that would be raised if either the
node or the parameter does not exist.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

try:
 # Attempt to access a node that might not exist
 node = hou.node('/obj/nonexistent_node')
 node.parm('tx').set(10)
except AttributeError:
 print("Failed to find the node or parameter.")

oriolmanzano.com python

09. BATCH PROCESSING

Batch processing allows you to automate repetitive
tasks over multiple files or data sets. This can save
considerable time, especially for tasks like rendering
or geometry processing:

This script iterates through a directory of Houdini
project files, opens each one, and performs
operations on them, illustrating batch processing's
power.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

import os

Directory containing .hip files
hip_files_dir = "/path/to/hip/files"
hip_files = [f for f in os.listdir(hip_files_dir) if
f.endswith('.hip')]

for hip_file in hip_files:
 hip_path = os.path.join(hip_files_dir, hip_file)
 # Use hou.hipFile to work with .hip files
 try:
 hou.hipFile.load(hip_path,
suppress_save_prompt=True)
 # Perform some operations here, e.g., rendering
 print(f"Processed {hip_file}")
 except hou.LoadWarning as lw:
 print(f"Warning while loading {hip_file}: {lw}")

oriolmanzano.com python

10. WORKING WITH EXTERNAL LIBRARIES

Python's extensive collection of libraries can be
leveraged in Houdini to extend its capabilities. For
instance, you might use numpy for complex
mathematical operations:

This snippet shows how to use numpy for
manipulating point data, which could then be
applied to geometry within Houdini.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

import numpy as np

Create an array of point positions
points = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2]])

Perform an operation, like scaling
scaled_points = points * 2

Now, you could use these scaled points to modify
geometry in Houdini

oriolmanzano.com python

11. CREATING DIGITAL ASSETS WITH PYTHON

Digital assets in Houdini (HDAs) can encapsulate
complex setups for reuse. Python can automate the
creation and configuration of HDAs:

This example demonstrates how to
programmatically create a digital asset from a
geometry node, setting the foundation for
automating complex asset creation.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

Create a new geometry node
geo_node = hou.node('/obj').createNode('geo',
'MyGeoAsset')

Define the node's parameters or setup as needed
...

Create a digital asset from this node
definition =
geo_node.createDigitalAsset(name="my_geo_asset",

hda_file_name="/path/to/save/my_geo_asset.hda",
 description="A custom geo asset",
 version="1.0")

Now you have a digital asset that can be shared or
reused

oriolmanzano.com python

12. AUTOMATING UI ELEMENTS

For tools and scripts that require user interaction,
automating UI creation is crucial. Houdini's Python
API allows for dynamic UI creation:

This script shows how to prompt the user with a
simple dialog window, collect input, and handle the
response, illustrating how to integrate user feedback
into your scripts.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

import hou

def my_custom_ui():
 # Create a dialog window with user inputs
 dialog = hou.ui.readMultiInput("Enter parameters
for the operation:", ["Parameter 1", "Parameter 2"])

 if dialog[0] ==
hou.ui.DialogResponseType.Accepted:
 print(f"User input: {dialog[1]}")
 else:
 print("Operation canceled by user.")

Invoke the UI
my_custom_ui()

oriolmanzano.com python

13. CUSTOM OPERATORS WITH PYTHON

Houdini allows the creation of custom operators or
Houdini Digital Assets (HDAs) using Python, which
can encapsulate complex behaviors and processes:

This code defines a skeleton for a custom SOP
(Surface Operator) that does nothing at the moment
but provides a template for implementing your
cooking logic.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

Define a new Python SOP
class MyCustomSOP(hou.SopNode):
 def __init__(self, *args, **kwargs):
 super(MyCustomSOP, self).__init__(*args,
**kwargs)

 def cook(self, geometry):
 # Your cooking logic here
 pass

Register the operator
hou.sopNodeTypeCategory().addNodeType('MyCusto
mSOP', MyCustomSOP, icon="SOP_torus")

oriolmanzano.com python

14. EVENT-DRIVEN SCRIPTING

Houdini scripts can respond to various events, such
as changes in the node network or parameter
updates, enabling dynamic and responsive tools:

This example shows how to set up a callback that
prints a message whenever any parameter value
changes in the node network, illustrating the basics
of event-driven scripting in Houdini.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

def parameter_changed_callback(event_type,
**kwargs):
 if event_type ==
hou.nodeEventType.ParmValueChanged:
 node = kwargs["node"]
 changed_parm = kwargs["parm"]
 print(f"Parameter {changed_parm.name()} on
node {node.name()} was changed.")

Register the callback
hou.nodeCallbacks().addCallback(parameter_change
d_callback)

oriolmanzano.com python

15. INTERFACING WITH EXTERNAL APPLICATIONS

Python scripts in Houdini can communicate with
other applications, allowing for workflows that span
multiple tools. This can be done through various
means, including command line tools, web APIs, or
file interchange formats:

These snippets demonstrate calling an external
command-line tool and sending data to a web API,
respectively, showcasing how Houdini can be part of
a larger pipeline.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

import subprocess

Example: Call an external command-line tool
subprocess.run(["my_external_tool", "-arg", "value"])

Example: Send data to a web API (simplified)
import requests
response = requests.post("http://myapi.com/data",
json={"my": "data"})
print(response.text)

oriolmanzano.com python

16. SCRIPTING FOR DATA VISUALIZATION

Houdini's powerful geometry and rendering
capabilities make it an excellent tool for data
visualization. Python scripts can generate geometric
representations from data:

This code creates a series of points with random
positions, serving as a basic example of data
visualization.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

import random

geo = hou.node('/obj').createNode('geo',
'DataVisualization')
points = [geo.createNode('add', 'Point_{}'.format(i)) for
i in range(10)]

for point in points:
 # Set random positions for each point
 point.parmTuple('pt0').set((random.uniform(-1, 1),
random.uniform(-1, 1), random.uniform(-1, 1)))

Optionally, add more nodes to visualize
connections, surfaces, etc.

oriolmanzano.com python

17. CUSTOM UIs FOR TOOLS AND SCRIPTS

Building on the concept of automating UI elements,
you can create more complex and interactive user
interfaces for your tools using PySide2 or PyQt:

This example demonstrates creating a basic UI with a
label, illustrating the first step toward more
sophisticated tool interfaces.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

from PySide2 import QtWidgets

class MyToolUI(QtWidgets.QWidget):
 def __init__(self, parent=None):
 super(MyToolUI, self).__init__(parent)
 self.layout = QtWidgets.QVBoxLayout(self)
 self.label = QtWidgets.QLabel("My Custom Tool", self)
 self.layout.addWidget(self.label)

Display the UI
app = QtWidgets.QApplication([])
ui = MyToolUI()
ui.show()
app.exec_()

oriolmanzano.com python

18. PERFORMANCE OPTIMIZATION IN SCRIPTS

Efficiently written Python scripts are crucial for
maintaining performance, especially when dealing
with large datasets or complex operations in Houdini:

The use of .freeze() on a geometry object allows for
operations to be performed without updating the
scene after each change, illustrating a simple
optimization technique.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

Example: Use hou.Geometry.freeze() for heavy
operations
geo = hou.node('/obj/geo1').geometry().freeze()
Perform operations on geo without triggering updates
in the scene...

oriolmanzano.com python

Understanding and manipulating Houdini's node
network via Python provides a powerful means to
automate and customize your workflow:

19. LEVERAGING NETWORK ARCHITECTURE

This script demonstrates creating a geometry node
containing a box and a transform node, showcasing
how to programmatically manipulate the node
network.

Example: Create a series of connected nodes
node = hou.node('/obj').createNode('geo',
'DynamicGeometry')
box = node.createNode('box')
transform = node.createNode('xform')
box.setNextInput(transform)

Automatically layout nodes for clarity
node.layoutChildren()

oriolmanzano.com python

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

Procedural modeling is one of Houdini's core
strengths. Python can be used to create or modify
procedural models, offering a scriptable approach to
complex geometry creation:

20. SCRIPTING FOR PROCEDURAL MODELING

This example illustrates how to create a simple
procedural staircase by copying a box geometry with
transformations, emphasizing Python's role in
procedural modeling.

Example: Create a procedural staircase
geo = hou.node('/obj').createNode('geo', 'Staircase')
copy = geo.createNode('copy')
box = geo.createNode('box')
transform = geo.createNode('xform')

transform.parm('ty').set(0.5)
copy.setInput(0, box)
copy.setInput(1, transform)
copy.parm('ncy').set(10) # Number of copies

geo.layoutChildren()

oriolmanzano.com python

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

With the growing accessibility of machine learning
models, integrating them into Houdini workflows
opens up innovative possibilities for automation and
creativity:

21. INTEGRATING WITH MACHINE LEARNING
MODELS

This pseudocode outlines how a machine learning
model could be used to generate geometry based on
input parameters, illustrating the potential for
advanced automation and creative expression.

Pseudocode: Use a machine learning model to generate
geometry based on input parameters
import hou
import my_ml_model

def generate_geometry_with_ml(input_params):
 # Generate model input from parameters
 model_input = my_ml_model.prepare_input(input_params)

 # Predict geometry data with the model
 geometry_data = my_ml_model.predict(model_input)

 # Convert predicted data into Houdini geometry
 geo = hou.node('/obj').createNode('geo', 'GeneratedGeo')
 # Assuming geometry_data contains points, create them in
Houdini
 for point_data in geometry_data['points']:
 geo.createPoint(point_data['position'])

 return geo

Example usage
input_params = {'complexity': 5, 'symmetry': True}
generated_geo = generate_geometry_with_ml(input_params)

oriolmanzano.com python

Python can also control rendering processes,
allowing for customized rendering pipelines,
pre/post-processing, or automation of rendering
tasks:

22. CUSTOM RENDER PROCEDURES

This script automates rendering from multiple
cameras, showcasing how Python can streamline
rendering workflows in Houdini.

Example: Automate rendering of multiple cameras
render_node = hou.node('/out/mantra')
cameras = hou.node('/obj').glob('cam*') # Assumes
cameras are named cam1, cam2, etc.

for cam in cameras:
 render_node.parm('camera').set(cam.path())
 render_node.render()

oriolmanzano.com python

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

Simulations are a critical component of Houdini's
toolset. Python scripting can be used to control
simulation parameters dynamically or analyze
simulation results for further processing:

23. SIMULATION CONTROL AND ANALYSIS

This example dynamically adjusts simulation
parameters based on initial conditions,
demonstrating Python's potential to refine
simulations through scripting.

Example: Adjust simulation parameters based on
initial results
sim_node = hou.node('/obj/AutoDopNetwork')
initial_velocity = sim_node.parm('velocity').eval()

if initial_velocity < 10:
 sim_node.parm('gravity').set(-9.81) # Adjust gravity
for low initial velocity
else:
 sim_node.parm('gravity').set(-1.62) # Lunar gravity
for high initial velocity

Re-run simulation with adjusted parameters
sim_node.simulate()

oriolmanzano.com python

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

In large projects or studio pipelines, efficient asset
management becomes crucial. Python scripts can
automate asset tracking, versioning, and updates:

24. ENHANCING ASSET MANAGEMENT

This script identifies asset nodes needing updates
and applies the latest version, illustrating Python's
role in

Example: Batch update asset versions
asset_nodes = hou.node('/obj').glob('asset_*')
latest_version = 'v1.2'

for asset in asset_nodes:
 if asset.type().definition().version() < latest_version:
 # Assuming an updateAssetVersion function
exists
 updateAssetVersion(asset, latest_version)

oriolmanzano.com python

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

| ABOUT THE AUTHOR

 I am Oriol Manzano, a visionary at the convergence of computer
science and visual arts, driven by a passion for innovation and
creativity. My journey began in Barcelona, where I developed a
fascination with technology's transformative potential. Pursuing
my education at Epitech University in Toulouse and Paris, I
explored the intersections of 3D design, artificial intelligence,
and machine learning. Collaborating with esteemed companies
like Axis Studios, Virtuos, and Technicolor, I've contributed to
AAA gaming titles such as "Sackboy: A Big Adventure" for the
PlayStation 5 and cinematic experiences like "Transformers 4"
and "Ant-Man," crafting immersive visual effects and captivating
storytelling. Beyond work, I'm committed to pushing the
boundaries of technology and art, championing creativity's
transformative power, and leaving a lasting impact in the ever-
evolving landscape of computer science and visual arts.

oriolmanzano.com| GETTINGSTARTEDWITHPYTHON

| ABOUT THE AUTHOR • 75

oriolmanzano.com

